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A CHARACTERIZATION OF A PRIME p FROM THE BINOMIAL

COEFFICIENT
(

n

p

)

ALEXANDRE LAUGIER AND MANJIL P. SAIKIA

Abstract. We complete a proof of a theorem that was inspired by an Indian Olympiad prob-
lem, which gives an interesting characterization of a prime number p with respect to the binomial
coefficients

(

n

p

)

. We also derive a related result which generalizes the theorem in one direction.
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1. Introduction and Motivation

Problem 1.1. 7 divides
(

n

7

)

− ⌊n
7 ⌋, ∀n ∈ N.

The above appeared as a problem in the Regional Mathematical Olympiad, India in 2003. Later in
2007, a similar type of problem was set in the undergraduate admission test of Chennai Mathematical
Institute, a premier research institute of India where 7 was replaced by 3.

This became the basis of the following

Theorem 1.2 ([3], Saikia-Vogrinc). A natural number p > 1 is a prime if and only if
(

n

p

)

− ⌊n
p
⌋ is

divisible by p for every non-negative n, where n > p+ 1 and the symbols have their usual meanings.

2. Proof of Theorem 1.2

In [3], the above theorem is proved. The authors give three different proofs, however the third
proof is incomplete. We present below a completed version of that proof.

Proof. First we assume that p is prime. Now we consider n as n = ap+ b where a is a non-negative
integer and b an integer 0 ≤ b < p. Obviously,

(2.1)

⌊

n

p

⌋

= ⌊
ap+ b

p
⌋ ≡ a (mod p).

Now let us calculate
(

n

p

)

(mod p).
(

n

p

)

=

(

ap+ b

p

)

=
(ap+ b) · (ap+ b− 1) · · · (ap+ 1) · ap · (ap− 1) · · · (ap+ b− p+ 1)

p · (p− 1) · · · 2 · 1

=
a · (ap+ b) · (ap+ b− 1) · · · (ap+ 1) · (ap− 1) · · · (ap+ b− p+ 1)

(p− 1) · (p− 2) · · · 2 · 1

=
aX

(p− 1)!

where X = (ap+ b) · (ap+ b− 1) · · · (ap+ 1) · (ap− 1) · · · (ap+ b− p+ 1).
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We observe that there are (p− 1) terms in X and each of them has one of the following forms,
(a) ap+ r1, or
(b) ap− r2
where 1 ≤ r1 ≤ b and 1 ≤ r2 ≤ (p− 1− b).
Thus any two terms from either (a) or (b) differs by a number strictly less than p and hence not
congruent modulo p. Similarly, if we take two numbers - one from (a) and the other from (b), it is
easily seen that the difference between the two would be r1 + r2 which is at most (p − 1) (by the
bounds for r1 and r2); thus in this case too we find that the two numbers are not congruent modulo
p. Thus the terms in X forms a reduced residue system modulo p and so, we have,

X ≡ (p− 1)! (mod p)(2.2)

Thus using (2.2) we obtain,

(

n

p

)

= a
X

(p− 1)!
≡ a (mod p)(2.3)

So, (2.1) and (2.3) combined gives

⌊

n

p

⌋

≡

(

n

p

)

(mod p).(2.4)

So, forward implication is proved.
To prove the reverse implication, we adopt a contrapositive argument meaning that if p were not

prime (that is composite) then we must construct an n such that (4) does not hold. So, let q be a
prime factor of p. We write p as p = qxk, where (q, k) = 1. In other words, x is the largest power of
q such that qx|p but qx+1 6 | p (in notation, qx||p). By taking, n = p+ q = qxk + q, we have

(

p+ q

p

)

=

(

p+ q

q

)

=
(qxk + q)(qxk + q − 1) . . . (qxk + 1)

q!

which after simplifying the fraction equals (qx−1k+1) (q
xk+q−1)...(qxk+1)

(q−1)! . Clearly, (qxk+q−1) . . . (qxk+

1) ≡ (q − 1)! 6≡ 0 (mod qx). Therefore,

(qxk + q − 1) . . . (qxk + 1)

(q − 1)!
≡ 1 (mod qx)

and
(

p+ q

p

)

≡ qx−1k + 1 (mod qx).

On the other hand obviously,
⌊

p+ q

p

⌋

=

⌊

qxk + q

qxk

⌋

≡ 1 (mod qx).

Now, since (q, k) = 1, it follows that qx−1k + 1 6≡ 1 (mod qx). So we conclude,

(

p+ q

p

)

6≡

⌊

p+ q

p

⌋

(mod qx).(2.5)

So, p ∤ (
(

p+q

p

)

− ⌊p+q

p
⌋), for if p|(

(

p+q

p

)

− ⌊p+q

p
⌋), then since qx|p, we would have qx|(

(

p+q

p

)

− ⌊p+q

p
⌋), a

contradiction to (5). Thus,
(

p+q

p

)

6≡ ⌊p+q

p
⌋ (mod p). Hence we are through with the reverse implication

too.
This completes the proof of Theorem 1.2. �
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3. Another simple result

We state and prove the following simple result which generalizes one part of Theorem 1.2

Theorem 3.1. For n = ap+ b = a(k)p
k + b(k), we have

(

a(k)p
k + b(k)

pk

)

−

⌊

a(k)p
k + b(k)

pk

⌋

≡ 0 (mod p)

with p a prime, 0 ≤ b(k) ≤ pk − 1 and k a positive integer such that 1 ≤ k ≤ l, where

n = a0 + a1p+ . . .+ akp
k + ak+1p

k+1 + . . .+ alp
l

and for k ≥ 1

a(k) = ak + ak+1p+ . . .+ alp
l−k

and

b(k) = a0 + a1p+ . . .+ ak−1p
k−1.

.

The proof of this follows from the reasoning of the proof of Theorem 1.2 although there are some
subtleties.

In particular, we have

a = a(1) = a1 + a2p+ . . .+ alp
l−1

and

b = b(0) = a0.

For k = 0, we set the convention that a(0) = n = a0 + a1p + . . . + alp
l and b(0) = 0. Notice that

Theorem 3.1 is obviously true for k = 0. But the case k = 0 doesn’t correspond really to a power of
p where p is a prime.

Proof. We have
(

n

pk

)

=

(

a(k)p
k + b(k)

pk

)

=
(a(k)p

k + b(k)) · (a(k)p
k + b(k) − 1) · · · (a(k)p

k + 1) · a(k)p
k · (a(k)p

k − 1) · · · (a(k)p
k + b(k) − pk + 1)

pk · (pk − 1) · · · 2 · 1

=
a(k) · (a(k)p

k + b(k)) · (a(k)p
k + b(k) − 1) · · · (a(k)p

k + 1) · (a(k)p
k − 1) · · · (a(k)p

k + b(k) − pk + 1)

(pk − 1) · (pk − 2) · · · 2 · 1
.

Thus we obtain

(pk − 1)!

(

n

pk

)

= a(k)

(

b
∏

r=1

(a(k)p
k + r)

)





pk
−1−b
∏

r=1

(a(k)p
k − r)



 .

Or a(k)p
k + r ≡ r (mod pk) and a(k)p

k − r ≡ −r ≡ pk − r (mod pk) with 0 < r < pk. It follows

(

b
∏

r=1

(a(k)p
k + r)

)





pk
−1−b
∏

r=1

(a(k)p
k − r)



 ≡

(

b
∏

r=1

r

)





pk
−1−b
∏

r=1

(pk − r)



 (mod pk).

Since
(

b
∏

r=1

r

)





pk
−1−b
∏

r=1

(pk − r)



 =

(

b
∏

r=1

r

)





pk
−1
∏

r=b+1

r



 =

pk
−1
∏

r=1

r = (pk − 1)!

we have
(

b
∏

r=1

(a(k)p
k + r)

)





pk
−1−b
∏

r=1

(a(k)p
k − r)



 ≡ (pk − 1)! (mod pk).
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We can notice that,

(pk − 1)! = q(p− 1)! p1+p+...+p
k−1

−k

with gcd(p, q) = 1 and because ordp((p
k − 1)!) = 1 + p+ . . .+ pk−1 − k. Therefore we have

a(k)c(k)p
k(pk

−1) + (pk − 1)!

{

a(k) −

(

n

pk

)}

= 0.

Equivalently

a(k)c(k)p
k(p−1)(1+p+...+pk−1) + q(p− 1)! p1+p+...+pk−1

−k

{

a(k) −

(

n

pk

)}

= 0

Dividing the above equation by p1+p+...+pk−1
−k we have

q(p− 1)!

{

a(k) −

(

n

pk

)}

+ a(k)c(k)p
k+(k(p−1)−1)(1+p+...+pk−1) = 0.

Thus

q(p− 1)!

{

a(k) −

(

n

pk

)}

≡ 0 (mod pk)

Since if m ≡ n (mod pk) implies m ≡ n (mod p) (the converse is not always true), we also have

q(p− 1)!

{

a(k) −

(

n

pk

)}

≡ 0 (mod p).

As q(p− 1)! with gcd(p, q) = 1 and p are relatively prime, we get
(

n

pk

)

− a(k) ≡ 0 (mod p).

We finally have
(

n

pk

)

≡

⌊

n

pk

⌋

(mod p).

�

Theorem 3.2. Let p be a prime number, let k be a natural number and let x be a positive integer

such that

x ≡ r (mod pk)

with 0 ≤ r < pk. Denoting q = ⌊ x
pk ⌋ the quotient of the division of x by pk, if there exists s ∈ N⋆ for

which

⌊
x

pks
⌋ = qs

then we have

x ≡ r (mod pks).

Proof. Given p a prime number, let x be a positive integer such that x ≡ r (mod pk) with 0 ≤ r < pk.
Denoting q = ⌊ x

pk ⌋, we assume that there exists s ∈ N⋆ for which

⌊
x

pks
⌋ = qs.

If k = 0, the result is obvious since for all integers x, r, we have x ≡ r (mod 1). In the following, we
assume that k ∈ N⋆.

Then, we have
x = qpk + r

and
x = qspks + r′

with 0 ≤ r′ < pks. It comes that
qpk + r = qspks + r′.
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So (s ∈ N⋆)
qspks − qpk = r − r′ ≥ 0.

Since 0 ≤ r < pk, we have
0 ≤ r − r′ < pk.

Moreover, rewriting the equality qspks − qpk = r − r′ as

qpk(qs−1pk(s−1) − 1) = r − r′

we can notice that pk|r − r′. Since 0 ≤ r − r′ < pk, it is only possible if r − r′ = 0 and so

r = r′.

From the equality x = qspks + r′, we deduce that

x ≡ r (mod pks).

�

A consequence of the Theorem 3.2 is that if an integer y is congruent to a positive integer x modulo
pk such that x ≡ r (mod pk), provided the conditions stated in the Theorem 3.2 are fulfilled, we have
also y ≡ r (mod pks).

It can be verified easily that the product
(

∏b

r=1(a(k)p
k + r)

) (

∏pk
−1−b

r=1 (a(k)p
k − r)

)

contains the

term (a(k)p
k)p

k
−1 = a

pk
−1

(k) pk(p
k
−1). The term (a(k)p

k)p
k
−1 is the only term in pk(p

k
−1) which appears

in the decomposition of this product into sum of linear combination of powers of p. Notice also that
the number k(pk − 1) is the greatest exponent of p in this product when we decompose this product
into sum of linear combination of powers of p (like a polynomial expression in variable p). Afterwards,

we write a
pk

−1
(k) as c(k) in order to simplify the notation. Thus, the quotient of the division of this

product by pk(p
k
−1) is c(k) = a

pk
−1

(k) .

So, from the Theorem 3.2, we can now write
(

b
∏

r=1

(a(k)p
k + r)

)





pk
−1−b
∏

r=1

(a(k)p
k − r)



 = c(k)p
k(pk

−1) + (pk − 1)!.
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